Once the ideal design technology has been chosen for a given application, our R&D team can work with you to further optimize the parameters of your transmission grating for best performance. Since each grating is written as an original rather than being replicated from a costly primary grating, we are able to easily fine-tune the performance of each grating design project for bespoke research or OEM applications. Experience with a wide variety of projects over 2 decades has expanded our capabilities in almost every parameter, as described below.
Wavelength
We routinely provide gratings operating at wavelengths ranging from 300 nm to 2500 nm, and will look at designs outside this range upon request. Our high efficiency gratings may be optimized for narrow wavebands, or over bandwidths spanning hundreds of nanometers.
Polarization
Gratings may be optimized for a single polarization (s- or p-), or designed for best performance over a given bandwidth of unpolarized light. Polarization may even be optimized differently for specific wavelengths in unique circumstances.
Dispersion
Exact grating dispersion or spatial frequency may be specified, 150-5000 lines/mm. Our standard specification for spatial frequency accuracy is ± 0.5-1.0 lines/mm, with tighter tolerances available upon request.
Angle of Incidence
VPH gratings are typically designed to work at the Bragg angle, with equal angle of incidence (AOI) and angle of diffraction (AOD). The AOI used influences other performance parameters, and thus limitations on the desired angle range should be discussed with our design team. Non-symmetrical gratings can also be fabricated as needed (AOI≠AOD).
Grating size
While many of our standard gratings are available as 25 or 50 mm diameter rounds, we also provide square and rectangular gratings for pulse compression, spectroscopy, and astronomy. VPH transmission gratings can be produced in volume as small as 10×10 mm, and smaller for special projects. At the opposite extreme, we can image large format gratings up to 300 mm in dimension for astronomy, large imaging arrays, and hyperspectral spectrographs (larger upon request).
Substrates
We work with a wide variety of substrate types, including BK7, B270, fused silica, and others. We source substrates of only the highest quality from a list of preferred suppliers selected for optical quality, wavefront retention, and ability to provide low-defect material for minimal scatter. Specific glass parameters may be called out as needed, such as flatness, homogeneity, low bubble inclusion, and criteria on striae.
Substrates may vary from 1 mm (to minimize material induced dispersion and self phase modulation in ultrafast laser applications) to up to 25 mm thick to provide the rigidity needed for large format astronomy gratings. Custom substrate geometries are also available upon request, such as grisms (a grating-prism hybrid).